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COLLECTOR HEAT EXCHANGER WITH VARIABLECOOLANT PROPERTIES 

V. A. Babenko UDC 5'36.48 

A mathematical model of the cooling of a porous heat-liberating tube between 
a coaxial tube and a channel of annular cross section is proposed and rea- 
lized. 

The delivery of heat carrier through the lateral wall of one channel and its collec- 
tion in another coaxial channel is a widely used method in heat exchangers, chemical reac- 
tors, and power plants [i, 2]. On cooling extended porous elements, the use of a trans- 
verse filtration scheme ensures multiple reduction in hydraulic expenditures in comparison 
with the longitudinal Scheme. 

One possible deficiency of the transverse-filtration scheme (the so-called collector 
scheme) is nonuniformity of filtration over the length of the apparatus, which reduces its 
effectiveness and may facilitate the development of an emergency. Reducing the nonuniform- 
ity entails rational choice of the cross sections of the delivery and collection channels, 
as well as the wall porosity. 

The method of heat-exchanger calculation is to solve the parabolic momentum and energy 
equations in the channels and in the porous wall, matching the solutions at the boundaries 
of the calculation regions in accordance with external and internalboundary conditions. 

Four regions of radius variation are isolated (Fig. i) in the cylindrical coordinate 
system (r, x): a) the central tube, r e (0, a); b) the internal region of the annular chan- 
nel, r e (b, f); c) the outer region of the annular channel, r e (f, c); d) the porous wall, 
where r = f, the radius of maximum velocity in the annular channel. 

The equations of mass, momentum, and energy balance are now written in one of the flow 
regions a, b, or c "in the channels 

a (rf~.) 4 a (r~u) = o, (1 )  
Ox Or 

Ou Ou dP 1 0 (rT) 
9u + 9v - -  - -  + , (2)  

Ox Or dx r 0 v 

Oh Oh 1 0 
pu ~ + Ov - -  - Or r 0,/ (rq), ( 3 )  

where y = [r - rw[ is the distance from the corresponding wall'; the shear stress �9 and heat- 
flux density q are defined as follows 

Ou 
= p~ff  --, (4) 

Oy 

I 
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Fig.  1. Diagram of hea t  exchanger;  1) cas ing ;  
2) heat-liberating porous tube; a., b, c, wall 
radii; f, radius of maximum velocity in annu- 
lar channel. 

Pr,, Oh q = pv -- 
Pr Oy 

(5) 

where 

vef~= 1.q_ %. p r m = ( 1  @ vt Pr ) /  

Suppose that the coolant motion in the porous wall occurs in a radial direction and 
conforms to Darcy's law. Local temperature equality of the frame of the porous body and 
the coolant within the wall is assumed. The basis for these and other assumptions ir the 
formulation of the problem was considered in [3]. 

The equations of mass, momentum, and energy balance in the porous wall take the form 

O (rOy) = O, 
Or 

K OP 
pv ~- 

u OF 

9v Or 1" Or r cp Or + -&x -cp Ox " 

(6) 

(7) 

(s) 

For the axial velocity component, the boundary conditions of adhesion at the imperme- 
able and permeable walls of the channels are assumed. At the external boundary r = c, the 
heat flux qwc = const is specified; at the central axis, the symmetry conditions 8h/St = 0, 
3u/Sr = 0, v = 0 are specified. At the internal boundaries r = a and r = b, continuity 
conditions are assumed for the pressure, the radial velocity component v and the enthalpy. 
The velocity in the porous medium is understood to be the mean velocity through unit cross 
section. The boundary conditions for matching of the heat flux at r = a and r = b take ac- 
count of the possibility that there are surface heat sources at these boundaries: [qwi] + 

~wi/2~rwi = 0, i = a, b, where [qwi] is the jump in qw at the boundary r = rwi; qwi is the 
power of the surface source. 

Converting Eqs. (1)-(8) to dimensionless form, all the linear dimensions are divided 
by L = ~ ) ;  the enthalpy by the enthalpy at the input h0; the velocities u and v by 

u 0 = GE/poSE; P and T by Pu02; q by p0u0ho; qv by 9ou0h0/L; q(w,v,d) by GEh0/L; and S by 
S E. The thermophysical properties are referred to the corresponding quantities in the in- 
put conditions. The dimensionless quantities will be denoted by the same symbols. In the 
cases where it is necessary to emphasize that dimensional quantities are meant, it is con- 
ventional to add an asterisk. 

As a result of integrating the initial Eqs. (1)-(3) and (6)-(8) over the cross section 
of the regions a, b, c, and d, a system of ordinary differential equations in terms of the 
variable is obtained 

(~~ = - J ,  ( 9 ) 
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( ) 

'~ ~):  = - ~q~ + fq~ + h (h~ ---f~), 

Se (hd); = PedO, 

where ]=pwaVwa a=pwbVwb b=pur i s  t he  d i m e n s i o n l e s s  t r a n s v e r s e  mass f l u x ;  (~)~x' 

(11)  

(12) 

(13) 

(14) 

(15) 

(16) 

is the loga- 
rithmic derivative of the density ~; Pe d = GZEpd/AdL2~ is a dimensionless complex. 

Equation (9) is the integral mass-balance equation in the central tube; Eqs. (i0) and 
(ii) are the momentum balance equations in the tube and the annular channel; and Eqs. (12)- 
(15) are the thermal balance equations in regions a, b, c, and d. Equation (16)describes 
the heat propagation by conduction along the porous wall. 

Integration of Eq. (7) over the radius of the porous wall gives a relation between the 
flow rate j and the pressure difference between the channels Pa- Pk 

] = RN__ (P~--P~). (17) 
~d 

The friction at the walls and the coefficients of the momentum flux and the heat fluxes 
in Eqs. I (9)-(16) are determined from the solution of the boundary problems for the radial 
velocity and enthalpy distributions. 

Suppose that the enthalpy field in the porous wall is self-similar with respect to the 
longitudinal coordinate, i.e., h = h1(r)hd(x), and that the effective thermal conductivity 
of the porous wall A and the specific heat of the gas at the wall Cp are equal to their 
mean values over the wall cross section. In this case, variable separation is possible in 
Eq. (8), which leads to the boundary problem for an ordinary differential equation in terms 
of the function hi(r). Solving this problem, the following expression is obtained for the 
radial enthalpy distribution in the porous wall 

z, ~ + (rba~-2 -5 rab~-~) 2r 2 -Jr- b24 -t- a~ -5 

(ra + r~) (s - -  a ~+~) ] 
(8 -5 2) Se ] 

where F~= b (aq~a-sq~) ,  Fb= a a - -~  (bq*b -}- q~b), zl = a~-lb - -  b~ e = ]Pea. 

The expression for the enthalpy difference across the wall gives the result 

h~,b__h~.a = Pedzl [(Fba~-2@Fab'~-e) S d - - ( p a - s F b ) ( b ~ - - a ~ )  ] ~ }  . (18) 

The velocity and enthalpy distribution in regions a, b, and c is now determined. 
tegrating Eq. (2) with respect to the radius from the wall r = r w to r gives 

In -  

2 

0 (rpu z) dr -5 rpuu = dP 1.2 - -  r~ -5 sgn (r, - -  rw%.), (19) 
rw 

where the function sgn takes the values -i, i, -i, respectively for regions a, b, and c. 

Substituting rpv from Eq. (i) into Eq. (19) and introducing the following dimensionless 
coordinates and variables 

r~ Sp~ s=(r 2-r~)/(r~-r~), ~ - -  g ' p =  g ' ] ' ' :  - r '~p '~v~'  s g n '  

the tangential frictional force in the flux $ is found in the form 
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~ O (Ou 2) 
~ = ~,~ - 6  ep  - k  . /'i' u -6  ] ~ i d~ - -  u l O (Ou~) d~ ( 2 0 )  

o Ox 

Determining the dimensionless current function U z from the relation 

OU~ =_ ~ (21) 
ae 

and i n t e g r a t i n g  Eq. (20) wi th  r e s p e c t  to  g, t he  r e s u l t  o b t a i n e d ,  a f t e r  a p p r o p r i a t e  manipula-  
tions, is 

0~ --  P -6 o~ Oe -6 ~ - - - - ~ )  - ~ x  (uu) - -  

In dimensionless form, Eq. (4) is as follows 

a~ 

au 1 a (u~ ~) 
0g O) ~X 

(22) 

(23) 

where Fz = SmN/r2DVeff. 

Within the framework of the boundary-layer approximation, the derivative of the pres- 
sure with respect to the longitudinal coordinate does not depend on the radius. Thexefore 

Op = O. (24) 

Together with the boundary conditions r = 0: u = Uz = 0; r = i: ~ = 0, U z = l, Eqs. 
(21)-(24) form the boundary problem for determining the functions g, u, U:, p. 

The boundary problem for the distribution of the enthalpy over the radius is derived 
analogously, and therefore is written at once 

a u  2 - - ^  p u h ,  (25) 
ae 

Oe = ' o~ O~ 9 U -Ox  ~o Oe Ox 

a~ 
0e = F~.~, (27) 

aH 
- -  o ,  ( 2 8 )  

Oe 

e = 0 :  ~ - ~  U2 0; ~ = 1 :  ~ =  ~ U ~ = 0 ,  

where F 2 = Pr/PrmFz, h = h - h, H = dh/dx. 

The boundary problems in Eqs. (21)-(24) and Eqs. (25)-(28) are w numericallf by 
the matrix-fitting method [3] at each step with respect to the longitudinal coordinate and 
in each region with respect to s. 

The most expedient algebraic models for calculating the characteristics of turbulent 
transfer v t and Pr t are the Reichart and Van Driest models [4], since numerous generaliza- 
tions for complex boundary conditions and nonisothermal flow are known for these modeLs. 
An expansion of the Reichart model to flow at small Reynolds numbers is used in the calcula- 
tions [5]. The well-known generalization to flow in an annular channel [6] is applied to 
the model transformed in this way, together with a transformation [7] to take account of 
nonisothermal conditions and injection-suction. The latter two effects influence the radial 
distribution of the tangential friction and heat flux similarly, and may therefore be taken 
into account in the same way. 

The turbulent Prandtl number Pr t is taken to be Pr t = 0.9. 

The interaction between different parts of the algorithm is now described. The bound- 
ary problems in Eqs. (21)-(24) and (25)-(28) are solved nuemrically by the matrix-fitting 
method successively in each layer with respect to x, with iterations for refinement of the 
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thermophysical properties and velocity profiles. The solutions of the boundary problems in 
regions a, b, c, d are matched according to the conditions of equal pressure gradients in 
regions b and c 

6~ 6~ 
S---~-P~=~pc, (29)  

continuity of the longitudinal velocity component at point r = f 

Ueb 6b _ uec 6c (30) 
(0 b We 

and c o n t i n u i t y  o f  t h e  e n t h a l p y  f i e l d .  

C losu re  o f  t h e  sys tem in Eqs. ( 9 ) - ( 1 6 )  r e q u i r e s  a method of  c a l c u l a t i n g  t h e  p o s i t i o n  
o f  t he  v e l o c i t y  maximum in t h e  annu l a r  channe l ,  i . e . ,  Sc, t he  f low r a t e  mc, and the  r a t e  of  
o v e r s p i l l  from r e g i o n  b i n t o  r e g i o n  c ,  j f  = (mc)x '  To t h i s  end, n e g l e c t i n g  t he  d e r i v a t i v e s  
o f  t h e  momentum-flux c o e f f i c i e n t s  ~b, gc, t he  momentum ba l ance  e q u a t i o n s  a r e  w r i t t e n  sepa-  
r a t e l y  f o r  r e g i o n s  b and c 

~ ] Ueb, ( 3 1 )  ~b ( 6 b ) ~  - -  u~b ( ~ b ) ~  = - -  pb - -  T~b - -  - -  

~b 

ffc (8~)~ - -  ue~ (wr = - -  Pc - -  ~w~ ( 3 2 )  

and Pb and Pc are excluded from Eqs, (31) and (32) using the condition in Eq. (29). The 
result obtained is 

6b~b (6b) ~ 6e~c - ~ ~ 6 b  , . 6 c ~ " 

Sb S~ (6c)~--ueb Sb (mb)z*q-u~r Sr ( e)'~= (33)  

6b 6~ ] 6b U~b" 
= -  g + S--- 

D i f f e r e n t i a t i n g  the velocity continuity condition in Eq. (30) and the mass balance 
equation mk = ~b + mc gives the following result after neglecting the small derivatives 

(Ueb)s and (Uec)Zx' 

( 6 ~  - -  (mb)~ = (6~)~ - -  ( ~ c ) ~ ,  ( 3 4 )  

~ b k ( ~ ) ;  ~ + ~ k ( ~ ) ~  . . . . . .  i .. ( 3 5 )  
% 

One more differential equation is derived by differentiating the balance condition for 
the cross section S k = S b + S c with respect to x. Taking into account that 6i = mi=/Si~i, 
i = b, c, it follows that 

S b (2 (%);. - -  (6b);. - -  (Pb);*) H- S~ (2 (too);. - -  (6~);x - -  (~)~)  = 0. ( 36 ) 

S o l u t i o n  o f  t he  system i n  Eqs. ( 3 1 ) - ( 3 6 )  w i t h  r e s p e c t  t o  (mc)s  and ( 6 c ) s  g i v e s  

(o~)'~ ~ sb + - -  + % Sb S k 

+--gJc s~ +-d-f/.  s~ s k 

~~ - ~ ~ + - -  S ~ k ( ~ b ) ; ~  + 
+ ~ "  Sc Sb % Sb S~ 

+ So.k(-#c);. - Sb.k , 

O)bk 

�9 Regarding Eq. (37) as the basic equation, it is added to the system to be solved in 
Eqs. (9)-(16). The latter expression for (6c) x' is auxiliary, and is used in the predictor 

(37) 
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Fig. 2. Variation in pressures AP, APE and Reynolds number 
of overflow Re r over the length: helium coolant, P = 1 atm, 

tT0 = tk0 = 6 K, mt0 = 0.9, K = i.i0 -12 m 2 (a), 4.10 -2 m ~ 
(b), a= 6 mm, b = 8.5 mm, c = 12 mm, x L = 0.6 m. 

stage of determining S c in the next layer with respect to x, S c = ~c2/6c~c . After sclving 
the boundary problems, the cross sections of regions b and c are refined from the matching 
condition for the profiles: UebWb/Sb[b = [ec~c/Sc~c . 

Obvious relations for matching the enthalpy field are 

fi~.~ -- ~,~ + (h.,b - h~,a) = hb -- ha, (38) 

heb--hr (39) 

~o - (h,~ - hd) : h~ -- F~ (40) 

and Newtonian linearization of the dependences hw = hw(r , Ce), he = he(r , ~e ) is expedient 

'a<' { ak,, I 

(42) 

Substituting Eqs. (41) and (42) into Eqs. (38)-(40), a system of three linear algebraic 
equations for r 6wb, and ~eb is obtained. It is taken into account here that {ec = -~b/ 
mc{eb. To solve these equations, it is necessary to know h, 8h/8r , 8~/8~eAat the ends of 
a unit interval in s~ i.e., the solution of the boundary problems for h, 8h/8{w, 8h/~{e. 
The grid functions 8h/8{w and 8h/8{ e are determined in the same fitting cycle with respect 
to g as for h. The boundary problems for all three functions are similar, which means that 
the volume of computational work increases only slightly in comparison with the solution 
of the boundary problem for h alone. The boundary problems for 8h/8{ w and 8h/8{ e may easily 
be obtained by differentiating Eqs. (25)-(28) with respect to the corresponding parameter. 

The algorithm and programs are tested by comparing the calculation results with ]:nown 
literature data for constant coolant properties; the agreement is good, for both the hydro- 
dynamic and thermal quantities. 

Analysis of the results on the hydraulic drag and heat-transfer coefficient in the col- 
lector heat exchanger are complex in view of the simultaneous action of several factors: 
the variable (over the length) flow rate in both channels; the presence of input hydrodynam- 
ic and thermal sections, the length of which depends on the rate of overflow; the variabil- 
ity of the rate of overflow itself; and the variability of the thermophysical properties. 
In the present work, the problem of determining the quantitative contribution of each effect 
is not posed. The heat exchanger is studied as a whole and compared with a prototype: an 
impermeable tube of the same size introduced into a coaxial frame. 
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Fig. 3. Dependence of the pressure drop APE = PE - PEL and 0 
the uniformity of the overflow on the proportion of the over- 
flow; data as in Fig. 2; p, %. 

Fig. 4. Comparison of calculation using the data of Fig. 2 
with approximation for NuE: I) calculation (k = 0.7, 2); II) 
approximation (k = 2). 

The variation in the dimensionless overflow rate Re r = 2ap~ovma/D0 depends not only on 
the geometric configuration and permeability but also on the proportion of overflow from 
channel to channel (Fig. 2). In the calculations, the boundary condition for the flow rate 
at the far end is satisfied by the ranging method from the solution of the Cauchy problem, 
with the ranging parameter (PT - Pk)0- For the data in Fig. 2, the proportion of the mass 
flow rate at the input is fixed (mT0 = 0.9), and the proportion of the flow rate at the 
output varies. With small suction, the suction rate increases over the length; decrease in 
mTL is accompanied by increase in Re r at the far end similar to that with a damped far end 
[i|. With increase in permeability, this increase becomes sharper. 

Data on the pressure are analyzed using the mean (over the cross section of both chan- 
nels) pressure P = StTP T + SkP k and the mean (over the volume) flow rate PE = PT(WT/PT)PE + 
Pk(mk/~k)PE, where PE = (mT/~T + mk/Pk )-I is the mean density over the volume. Using the 
momentum and mechanical-energy balance equations, it may be shown that the drop in P gives 
an idea of the losses due to friction and acceleration of the flux in the channels, while 
the drop in PE gives an idea of the power consumed in pushing the coolant through the heat 
exchanger as a whole. 

The distribution of the pressures P, PE (Fig. 2) depends on the parameter characterizing 
the proportion of overflow mTL in a complex, noumonotonic fashion; however, the drop in PE 
is always greater than the drop in P. In the initial section, there is restoration of the 
pressure. With increase in permeability, Re~ = f(~TL) is confined within an ever narrower 
interval. The limiting value Re~lim Rero with~ geometry may be obtained from the 

momentum balance Eqs. (i0) and (ii) on imposing the condition PTx' = Pkx' 

The dependence of the uniformity of filtration p = IAj/~I = IAjAx/Awl and the drop in 
mean-flow-rate pressure PE over the length on the proportion of overflow Am is shown in Fig. 
3. The curves APE(Am) have a minimum; its depth decreases with decrease in K. The exis- 
tence of a minimum is explained, on the one hand, in that the cross section of the annular 
channel in this case is large, and it is energetically more favorable to pump a larger part of the 
flow through the annular channel and, on the other hand, in that this entails pumping the 
coolant through the porous wall, with consumption of energy. The uniformity basically de- 
creases with decrease in the proportion of overflow. Increase in p at small Am is due to 
the vanishing of the denominator in the expression for p. 
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Fig. 5. Dependence of the min- 
imal (over the length) number 
NUZmin on the permeability and 
the proportion of overflow Aw; 
data as in Fig. 2; K, i0 -12 m 2. 

Turning to the results for total Nusselt number Nuz for both channels, the expression 
Nu E = Nu~0 + RerPr0/2 may be used for rough estimation of NuE, as in the case of isothermal 
thermophysical properties [8]; the standard Nusselt number Nuz0 here is expressed as fol- 
lows in terms of the Nusselt number in the tube and the annular channel 

Nuzo = (k:o -}- k~o)/(1 + ~ k - -  tT) ~a (~k~o - -  ~kk~O) qT'), 

klo = 0.5 Nu~o, k2o = O,5b N~o/(c--b),  

while NuT0 and Nuk0 are calculated from the results of [6, 9, i0], taking account of the 
presence of the input section and n0nisothermality. 

The above approximations for Nu E are compared with the results of numerical calcula- 
tion in Fig. 4. It is significant that, despite the considerable variability in filtration 
rate (Fig. 2), the variability of the flow rates in the channels, and the variability of 
the properties (the properties of gaseous helium at input temperature 6 K and atmospheric 
pressure are used in the calculations), the variation in the Nusselt numbers determining 
the intensity of cooling of the porous wall as a whole over the length is relatively small. 

The minimal (over the length of the cooled section) Nusselt number NUEmin , determining 
the guaranteed minimum of the cooling intensity, may be of applied interest. As would be 
expected, this value increases with reduction in permeability (Fig. 5), since the nonuni- 
formity of the overflow decreases, and with increase in the proportion of overflow from the 
delivery channel to the collection channel on account of the intensification of heat trans- 
fer. 

NOTATION 

x, r, longitudinal and radial coordinates; u, v, longitudinal and radial components of 
the velocity vector, u = u/F; P, pressure; t, temperature; h, enthalpy; p, density; p := p/~; 
~, kinematic viscosity; X, thermal conductivity of coolant; A, thermal conductivity of po- 
rous wall; Cp, specific heat; Pr = VCpp/%, laminar Prandtl number; ~, volume heat-libera- 
tion density in porous body; Q, heat flux along wall; K, permeability, K = K/L 2 in b/a; S, 
cross section of region, S E = S= + S b + Sc; qw, linear density of heit liberation at surface; 

b 

#~= ;~rdr~ linear density of volume heat liberation, qd = qv + qwa + qwb; G, flow rate :Ln re- 
d 

gion, G E = G~ + G b + Gc, ~ = G/GE; ~ = ~u2/bu 2, momentum flux coefficient; 6 = m2/~p, dimen- 
sionless momentum flux; jf = fpfvf + uf(Sc)x', dimensionless rate of coolant overflow from 
region b to region c; N = Lu0/v0; Nu T = 2aqw /~T(tw -~T); Nuk = 2(c - b)qwb/~k(twb -~k); 
Nu E = ~d/% E = (0.5twa + 0.5twb - tE) ; t E = ~o~a + t-k~k. Indices: i = a or T, b, c, k, d, 
in regions with r e [0, a], [b, f], [f, c], [b, c], [a, b], respectively; w, wall; wi, i-th 
wall; v, inside wall; 0, at input or in standard conditions; e, external boundary of region 
(at center of flow); el, i-th external boundary; t, turbulent value; f, at r = f; L, at the 
end far from the input. 
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RADIANT HEAT TRANSFER IN A FURNACE WITH TWO VOLUME 

ZONES 

S. P. Detkov UDC 536.3 

A modification of the model of radiant heat transfer in a furnace for arbi- 
trary transmission of the furnace core is proposed. 

i. Introduction 

In the mathematical model of [i], a furnace is represented by a cylindrical channel 
with division along the axis into zones with isothermal volumes in each section. Of course, 
the model gives significantly overestimated values of the heat transfer or underestimated 
values of the temperature of the exhaust gases, other conditions being equal. In [2], the 
model was significantly improved. The volumes in the radial direction are divided into two 
coaxial layers: the core and a conservative part; the conservative layer (CL) is noniso- 
thermal. Essentially, the core is also nonisothermal, but is characterized by the mean 
(over the cross section) pyrometric temperature. Some deficiencies of the model may be 
noted: a) the core is assumed to be optically dense and is replaced by a nontransparent 
surface with equivalent radiational properties; the model corresponds to a large furnace; 
b) the spectrum in extreme representations (grey and antigrey)only changes in the CL. 

The present model is modified on a new basis. The furnace core may have any transmis- 
sion characteristics; therefore the model in fact has two volume zones in each cross sec- 
tion of the channel. 

The principal underlying this new zonal-calculation approach was outlined in [3, 4]. 
The volume of the medium is replaced by a surface with equivalent radiative properties. 
This surface transmits some of the incident flux. Since the volume has a real temperature 
field, the surface has different local values of the intrinsic-radiation density qc and 
other quantities. Therefore, it is divided into zones with mean internal characteristics. 
In the present work, in contrast to [3-5], the volume is divided into two zones, and the 

Fig. i. System of four surfaces: 
three (Fz, F2, F,) represent two 
volume zones: the core and the 
conservative layer. 
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